Linux STREAMS (LiS) |
||
|
Kernel Compatibility Issues Concerning LiS |
|||||||||||||||
LiS-2.12 Kernel and Driver CompatibilityThis version of LiS is compatible with all 2.2.x versions of the kernel and with early versions of the 2.4.x kernel, at least up to 2.4.2 and perhaps later versions as well. If you have drivers that have worked with LiS-2.10 or LiS-2.11 (or earlier) please recompile them using the header files from LiS-2.12. This may be the last recompile in quite some time that you will need for your driver code. LiS-2.12 contains a sufficient Driver/Kernel Interface (DKI) that it is straightforward to write a STREAMS driver that can be compiled against LiS-2.12 and the resulting object modules used either on a 2.2 or 2.4 kernel, with only LiS needing recompilation on the target machine. When run on 2.4 kernels, LiS makes full use of multiple CPUs. It forks a queue runner task for each CPU and locks each task onto its CPU. Queue runner tasks are awakened to assist with service procedure processing as the number of scheduled queues increases. Because of this aggressive use of processors, you may find that your drivers do not function properly when run with LiS-2.12 in a multi-CPU SMP environment. You should expect that drivers that worked in single-CPU environments will continue to work as before. Making your drivers MP safe involves the use of spin locks. The DKI documentation contains advice on the use of these locks. This version of LiS also contains a rewrite of the flushing code and tests added to strtst for flushing. In particular the details of the rules for flushing queue bands are now adhered to. Be advised, however, that Solaris STREAMS does not adhere strictly to these rules so there may be some subtle differences in behavior between LiS and Solaris when flushing queue bands. Speaking of queue bands, the queue band handling code has been debugged a bit more and a test added to strtst to illustrate its correct behavior. Differences between LiS-2.12.1 and LiS-2.12
Differences between LiS-2.12 and LiS-2.11The following is a list of differences between LiS-2.11 and LiS-2.12. The list may not be complete.
LiS-2.10 Kernel and Driver CompatibilityThis version of LiS is compatible with all 2.2.x versions of the Linux kernel. It may work with 2.4.x kernels, but you should probably wait for LiS-2.11 for that. If you have drivers that worked with LiS-2.8 or earlier, you must recompile your drivers in the context of the LiS-2.10 header files. The queue_t structure has changed in size since LiS-2.8 which means that the old RD and WR macros will not compute the correct addresses. LiS-2.10 contains features that are intended to greately reduce the necessity of recompiling STREAMS driver code in future versions of LiS or future versions of the kernel. The goal is to be able to compile STREAMS drivers against LiS-2.10 header files and use the resulting object code on both 2.2.x kernels and 2.4.x kernels. For more details about the interface between STREAMS drivers and the kernel, see the Driver/Kernel Interface documentation. New Features in LiS-2.11LiS-2.11 only differs from LiS-2.10 in that LiS-2.11 runs on kernel version 2.4.0 in addition to the 2.2 series of kernels. NOTE: When running with a 2.4 kernel, make sure that you are using modutils at least as recent as 2.3.21. The alignment of the text segment in loadable modules changed in the 2.4 kernel and the old modutils do not understand the new alignment. The strtst program will not run correctly unless LiS is loaded using the newer modutils. You can find the source for the new modutils at http://www.kernel.org/pub/linux/utils/kernel/modutils/v2.3. New Features in LiS-2.10LiS-2.10 contains a number of new features since LiS-2.8. LiS-2.9 was largely a beta release that tested these features.
Kernel Version 2.3.xFor LiS version 2.7 and later and for kernel version 2.3.x there are some significant compatibility issues. Click here for more on this topic. Kernel Version 2.2.xFor LiS version 2.5 and later and for kernel version 2.2.x there are no compatibility issues; there are no kernel patches whatsoever required to install LiS. You will need LiS-2.4 at minimum to run in a 2.2.x kernel. Kernel Version 2.0.36The latest version of LiS has not been tested on 2.0 kernels. Therefore, do not be surprised if it does not install or execute correctly in these kernels. If you are using an old kernel, you must also use an older version of LiS, perhaps LiS-2.5. For LiS version 2.5 and later and for kernel version 2.0.36 there are no kernel patches required to run LiS as a "bottom half" process. A one-line patch is required to run LiS as a kernel daemon process. The installation default is to run as a bottom half process in 2.0.36. LiS-1.25 or later should install properly with 2.0.36. The more recent the version of LiS, the less kernel patching is required. Extracting Old LiS Kernel Patches (obsolete)Previous versions of LiS installed inside the kernel source tree and included patches to the kernel in order to install LiS into the kernel. There was no provision made for removing these patches from the kernel. Beginning with LiS-1.25 any patches made to kernels whose version number is 2.0.35 or later can be removed from the kernel just by doing a "make realclean" in the LiS installation directory. If you have installed the older version of LiS in your kernel then you need to take steps to remove it prior to installing this version of LiS. There are two methods of doing this. Both are manual procedures.
mv /usr/src/linux /usr/src/linux.oldand then untar a fresh kernel source as /usr/src/linux. This method works fine if LiS was the only patch to your kernel. Once the new kernel works, remove the linux.old directory. cd /usr/src/linux/drivers rm -r streamsThat deletes almost all of the files that came with the old version of LiS. Next, you must restore the patched kernel files to their original state. From the directory /usr/src/linux, look for the following files: LiS:
If you have other patches in these files then you will need to consult one of the following files from the newly installed /usr/src/LiS directory:
Open Flags (obsolete)The open flags MODOPEN and CLONEOPEN have been changed since the previous version. You must recompile your STREAMS drivers using the new header files in order to incorporate this change. The change brings the bit assignments into conformance with SVR4. STREAMS drivers compiled against the old header files should not be linked into LiS without recompiling. The old open routines will misinterpret their flags argument. System Calls (obsolete)This change affects all application level programs that use the STREAMS constructs getpmsg, putpmsg or poll. For kernel versions prior to 2.0.36, LiS did not have official system call numbers assigned for getpmsg, putpmsg and poll. Beginning with kernel version 2.0.36, and all 2.2 kernels, LiS has official system call numbers assigned for getpmsg and putpmsg. The 2.2 kernels have a built-in poll system call. Therefore, there is no LiS poll system call in 2.2 kernels. The system call slots that LiS used for getpmsg and putpmsg in earlier kernels were, of course, taken up by other functions by the time the official system call slots got assigned for the 2.2 (and 2.1) kernel. That means that older STREAMS applications compiled for use with earlier versions of LiS, when run on newer kernels, will be issuing incorrect system calls for getpmsg and putpmsg. These applications need to be recompiled and relinked using the new LiS. The new version of LiS, even when run on kernels prior to 2.0.36, will always plug the system call table slots for the new "official" STREAMS system calls in addition to the older ad hoc slots. This means that you can use applications that utilize putpmsg and getpmsg with the new system calls on older kernels by using the new version of LiS. However, the poll system call is not so easy. If your application uses poll then you must maintain a version of it that is compatible with kernel versions prior to 2.0.36 and another version that is compatible with kernel versions 2.0.36 and beyond, including 2.2 kernels. The reason for this is that prior to 2.0.36, LiS contained the only implementation of the poll system call. However, starting with 2.0.36, the kernel contains its own implementation of poll and the LiS implementation must yield to the kernel's implementation. The system call slot used by LiS for poll and the one used by the Linux kernel are different. So there is really no way around maintaining two versions of such applications. The following table summarizes the system call number assignments for
different kernel versions. Numbers in plain text are the ad hoc numbers
used by earlier versions of LiS. Numbers in italics are official
kernel assigned numbers. The problem with the poll system call is that
the number 169, used by earlier version of LiS, is used for a different
system call in kernel version 2.0.36 and beyond. Thus, it is not possible
for LiS to plug that system call slot with a pointer to its poll routine
for backward compatibility.
In kernel versions 2.0.36 and earlier, LiS provides the implementation of the poll system call. In 2.2 kernels, the kernel provides the implementation of poll and LiS hooks into it on behalf of its STREAMS drivers. LibrariesThe older version of LiS had direct inline code for STREAMS system calls defined in stropts.h. The new version contains function prototypes in stropts.h with the actual system call code contained in a library that you link with your application program. The library resides in the directory /lib and is named libLiS.a. Thus, you need to include the directive "-lLiS" with the link of your STREAMS applications. For more about LiS libraries click here. Interactions with Other PackagesIn kernel versions around 2.2.14 there were some compile time clashes with the irda driver. These have been resolved and/or worked around in LiS-2.10. On kernel version prior to 2.0.36 there can be problems with LiS interacting with other packages such as JDK and, perhaps, iBSC. In particular, JDK looks to see if system call number 168 has been assigned. If it has, it assumes that the operating system implements the poll system call in that slot. As you can see from the chart above, older versions of LiS did plug system call 168, but with the getpmsg routine, not with poll. Although we do not know for sure there is a possibility that iBSC would have the same problem. The solution is to upgrade to a kernel at least as new as 2.0.36 or a 2.2 series kernel. Compatibility with Kernel Version 2.3.xVersion 2.3 of the Linux kernel brings with it some compatibility issues that need to be addressed by the LiS user. The two most important ones concern the file <sys/stropts.h> and the major device numbers used by LiS. stropts.h CompatibilityThere are no more compatibility problems with <sys/stropts.h> with glibc-2.1 and LiS-2.10. The following is more for historical purposes than practical necessity. Beginning at least with egcs-2.91.66 (egcs-1.1.2 release), which comes with Red Hat 6.0, there is a file in the standard include directory named <sys/stropts.h>. This file has constant definitions that are incompatible with those used in LiS/include/sys/stropts.h. If you compile an application against the glibc version of stropts.h, and compile LiS using its own version then certain ioctls may not work correctly. You should be aware of this problem and be sure to include "-I/usr/src/LiS/include" in the compiler options that you use in compiling your STREAMS based applications. In this version of LiS, some of the constants in stropts.h have been changed to conform to the values used by UnixWare and Solaris. These are different values than previously used in LiS. When you install LiS the installation procedure will ask you whether you want LiS compiled with the backward-compatible LiS constants, or the UnixWare/Solaris compatible constants. Logically speaking, it does not matter which set you use as long as LiS and your application code are both compiled with the same values. I highly recommend that you use the UnixWare/Solaris compatible version, however. A future release of egcs, utilizing glibc 2.2, will contain an updated version of its stropts.h which has constants that are compatible with UnixWare, Solaris and LiS. So by selecting the UnixWare/Solaris compatible version at this time you can ensure that your applications will be fully compatible with these values in the future. With any luck, these constants will never have to change again. Major Device Number CompatibilityThe second major compatibility issue concerns the major device numbers that LiS assigns to STREAMS devices. In the past LiS based these device numbers at 50, since the Linux kernel did not pre-define many major device numbers. As of kernel version 2.3.x there are major device numbers defined up to 220 and beyone! So starting with LiS-2.12, we have used the major number of 240 as the base for STREAMS device files. This range is supposed to be reserved for "experimental drivers" which should make it safe to use. What this means is that you must be sure to run the strmakenodes program before running any STREAMS applications after installing LiS-2.12. This need not concern you overly, since doing a "make install" in the /usr/src/LiS directory causes strmakenodes to be run anyway. This is more a concern if you are compiling LiS on one machine and then loading it onto another for execution. In such cases you may need to load the new strmakenodes program and run it. I am hoping that the kernel developers will expand the major and minor device number spaces for 2.6. If they do that then LiS should be able to get a block of majors allocated to it. |